Monitoring effects of bioremediation in a Kansas urban pond with a persistent toxic cyanobacterial bloom

Janaye D. Figge¹, Katlynn Decker², Elizabeth Smith², and Lydia H. Zeglin¹ ¹Division of Biology, KSU; ²Watershed Planning, Monitoring & Assessment, KDHE

Special thanks: Brett Lamer, Jesse Moran et al. Salina Parks & Recreation; Anson Liski, Matt Slough et al. EnBiorganic Technologies

Jerry Ivey Pond, Salina

<u>Problem</u>: Chronic, year-round blue-green algae bloom

Solution? "Bioaugmentation" with soil bacteria to outcompete algae

Biological control of Harmful Algal Blooms

- Problem: excess nutrients allow blue-green algae (Cyanobacteria) to grow excessively ("bloom"); usually worse when temperature is high
- Solutions can be physical, chemical, or biological
 - Physical: Aeration, mixing, draw-down...
 - Chemical: Algicide, coagulation, flocculation...
 - Biological: Augmentation with predators, algicidal, or competitive bacteria
- "Bioaugmentation" = Competitive bacteria should remove nutrients through their growth and remediate the Cyanobacterial bloom

Gallardo-Rodriguez et al. 2019

Sampling

10 locations, 6 times Before/after treatment Before/after aeration Before/after cessation

Water and sediment

Fountain (aeration) - Bioaugmentation input -

Data collection

Physicochemistry

- Temperature, pH
 dissolved oxygen (DO)
- Total suspended solids (TSS)
- Dissolved nutrients: inorganic and total N & P, DOC, micronutrients
- Sediment chemistry: total nitrogen (TN), total phosphorus (TP)

<u>Microbiology</u>

- Chlorophyll-a (chl-a)
- Ash-free dry mass (AFDM)
- Toxin concentrations
- DNA extraction, then bacterial and archaeal community composition and total bacterial counts in water and sediment
- Algal analysis (selected samples only)

Trophic State = Hypereutrophic

Trophic Class	Chla (ug/L)	TSS (mg/L)
Oligotrophic	0-2.6	Clear (<20)
Mesotrophic	2.6-7.3	Moderately clear (20-40)
Eutrophic	7.3-56	Low transparency (>40)
Hypereutrophic	56-155+	No transparency

After Carlson & Simpson 1996

Dissolved Oxygen (DO)

Peak in Sept. low in August

Biological oxygen demand highest in late August

<u>Sediment</u> <u>total P</u> (phosphorus)

Low variability over time, but high sediment P suggests potential for internal loading

<u>Sediment</u> <u>microbial</u> <u>community</u>

Not predictable by sampling date (P > 0.05)

<u>Sediment</u> <u>dominant</u> <u>micro-taxa</u>

Methane and sulfur life histories consistent with anoxic conditions

Water total bacterial & archaeal community

75% of variation explained by sampling date (P < 0.001)

<u>Water</u> <u>dominant</u> <u>micro-taxa</u>

Planktothrix agardhii is highly dominant, increases in November

Planktothrix agardhii

Global distribution Common in shallow, well mixed lakes Wide temperature range

Can produce hepatotoxic microcystins and other secondary compounds

McKindles et al. 2022

Increases in October

One study: toxicity \uparrow as irradiance \downarrow

Toxins may also \uparrow with death

Many possible factors

Conclusions

- Hypereutrophic, toxic, Planktothrix bloom
- Bioaugmentation had some effect but did not outcompete Cyanobacteria
- High internal nutrient loading possible

Kansas State University.

- Chronic bloom, particularly challenging to mitigate
- Biological controls may be more successful in weaker, more susceptible blooming populations

Department of Health

and Environment

Division of

Environment

EnBiorganic

Technologies

Monitoring effects of bioremediation in a Kansas urban pond with a persistent toxic cyanobacterial bloom

Janaye D. Figge¹, Katlynn Decker², Elizabeth Smith², and Lydia H. Zeglin¹ ¹Division of Biology, KSU; ²Watershed Planning, Monitoring & Assessment, KDHE

Special thanks: Brett Lamer, Jesse Moran et al. Salina Parks & Recreation; Anson Liski, Matt Slough et al. EnBiorganic Technologies